Math 217 Fall 2025 Quiz 10 – Solutions

Dr. Samir Donmazov

- 1. Complete* the partial sentences below into precise definitions for, or precise mathematical characterizations of, the italicized term:
 - (a) Suppose V and W are vector spaces. A linear transformation $T: V \to W$ is ...

Solution: A function $T: V \to W$ satisfying

$$T(u+v) = T(u) + T(v)$$
 and $T(\alpha v) = \alpha T(v)$

for all $u, v \in V$ and all scalars α in the underlying field (here \mathbb{R}). Equivalently, $T(\alpha u + \beta v) = \alpha T(u) + \beta T(v)$ for all u, v and all scalars α, β .

(b) A subspace of a vector space V is . . .

Solution: A subset $W \subseteq V$ satisfying:

- The zero element 0_V of V is in W.
- If $w_1, w_2 \in W$, then $w_1 + w_2 \in W$.
- If $w \in W$, then $\lambda w \in W$ for all scalars $\lambda \in \mathbb{R}$.
- (c) Suppose U is a vector space and $u_1, u_2, \ldots, u_n \in U$. The span of (u_1, u_2, \ldots, u_n) is \ldots

Solution: The set of all finite linear combinations of these vectors:

$$\operatorname{span}\{u_1,\ldots,u_n\} = \Big\{ \sum_{i=1}^n \alpha_i u_i \mid \alpha_1,\ldots,\alpha_n \in \mathbb{R} \Big\}.$$

It is the smallest subspace of U containing all u_i .

2. Suppose V and W are vector spaces and $\vec{0}_V$ is the zero vector in V. Show: A linear transformation $T: V \to W$ is injective if and only if $\ker(T) = \{\vec{0}_V\}$.

Solution: (\Rightarrow) Assume T is injective. If $v \in \ker(T)$, then $T(v) = 0_W = T(0_V)$. By injectivity, $v = 0_V$. Hence $\ker(T) = \{0_V\}$.

(\Leftarrow) Assume $\ker(T) = \{0_V\}$. Suppose T(u) = T(v). Then $T(u - v) = T(u) - T(v) = 0_W$, so $u - v \in \ker(T)$. By hypothesis $u - v = 0_V$, hence u = v. Therefore T is injective.

^{*}For full credit, please write out fully what you mean instead of using shorthand phrases.

- 3. True or False. If you answer true, then state TRUE. If you answer false, then state FALSE. Justify your answer with either a short proof or an explicit counterexample.
 - (a) Suppose X and Y are sets. The function $f: X \to Y$ is injective if and only if for all $x \in X$ there is a unique $y \in Y$ such that f(x) = y.

Solution: FALSE. The stated property is just the *definition of a function* (well-definedness), not injectivity. For a counterexample, let

$$X = \{1, 2\}, \quad Y = \{a\}, \quad f(1) = a, \ f(2) = a.$$

For each $x \in X$ there is a unique y = f(x), yet f is not injective since f(1) = f(2) with $1 \neq 2$. Injectivity requires: $f(x_1) = f(x_2) \Rightarrow x_1 = x_2$.

(b) Suppose V and W are vector spaces and $T:V\to W$ is a linear transformation. The image of T is a subspace of W.

Solution: TRUE. Let $\text{Im}(T) = \{T(v) \mid v \in V\} \subseteq W$. Then $0_W = T(0_V) \in \text{Im}(T)$. If $y_1 = T(v_1)$ and $y_2 = T(v_2)$, then for any scalars α, β ,

$$\alpha y_1 + \beta y_2 = \alpha T(v_1) + \beta T(v_2) = T(\alpha v_1 + \beta v_2) \in \operatorname{Im}(T).$$

Thus Im(T) is closed under linear combinations, hence a subspace of W.